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Physical interpretation of fracture-toughening 
mechanisms 
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The basic idea behind the toughening of materials by the introduction of energy-absorbing or 
dissipating artefacts is critically re-examined. It is shown that energy dissipation by plastic 
deformation or other dissipative processes at the tip of a growing crack does not contribute to 
increasing the effective surface energy or the crack resistance of the material. Erroneous 
interpretations of toughening by the presence of fibres or by phase transformations occuring at the 
tip of a growing crack are discussed. It is argued that all processes which dissipate e.nergy at the 
crack tip produce crack shielding and that this effect must be an important contribution to 
toughening. It is concluded that most of the features and properties embodied in methods of 
toughening can be explained by shielding effects and that the increase in toughness is due to 
a reduction in the local value of the crack extension force, or its equivalent stress intensity factor, 
and not to an increase in energy dissipated. 

1. I n t r o d u c t i o n  
Linear elastic fracture mechanics (LEFM) has been 
developed into a successful theory based on the well- 
founded experimental observation that a crack propa- 
gates in most brittle and semi-brittle materials when 
the crack extension force, ~#, (also referred to as the 
energy release rate) reaches a critical value, No. This 
critical value can be regarded as an intrinsic material 
property which defines the resistance to crack propa- 
gation, and when it is expressed in terms of the equi- 
valent stress intensity factor, K~c, is known as the 
fracture toughness. Experience has also shown that 
LEFM can be applied to those situations of small- 
scale yielding in which plastic deformation is confined 
to a small region around the tip of the crack, and in 
such cases there is no need to inquire into the physical 
significance of the critical value of ~# nor into the basic 
instability criterion on which its definition was origin- 
ally based. Although the original Griffith theory [1] 
pointed out the significant parameter in the fracture 
process, namely the crack extension force (or its equi- 
valent stress intensity factor introduced later by Irwin 
E2]), its critical value must be determined by experi- 
ment. For most materials this critical value is found to 
be much greater than twice the surface energy, 27, as 
originally predicted by Griffith [1], but this is of little 
practical consequence provided that it is a constant 
which can be used as a geometry- and load-indepen- 
dent characteristic material property. LEFM can 
therefore be regarded as a phenomenological theory 
based on an experimentally verifiable criterion. It has 
thus been possible to formulate LEFM in terms of the 
stress intensity factor, K, which is used as a parameter 
characterizing the deformation at the crack tip, avoid- 
ing any possible connection between K and the energy 
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release rate on which the theory was initially based. 
Attempts to extend fracture mechanics to more duc- 

tile or tougher materials where plastic deformation 
takes place on a larger scale when a crack grows, have 
been far less successful. Alternative fracture criteria for 
crack propagation, such as critical values of the J inte- 
gral [3, 4] and the crack-tip opening displacement 
(COD) [-4] have been proposed for these materials but 
ultimately the validity or applicability of such criteria 
can only be decided by experiment. 

In some tough materials, where cracks can be made 
to propagate in a stable, controlled manner, crack 
extension cannot be predicted by criteria based on 
a single parameter. In such materials the resistance to 
crack propagation seems to increase as the crack 
grows. The behaviour of the cracks in these materials 
is usually described by the so-called resistance curves, 
or R curves. 

It is recognized that the development of new tough 
materials and the explanation of toughening effects 
has been mostly guided by the intuitive notion that 
processes which dissipate energy during crack growth 
contribute to an increase in the toughness of the ma- 
terial. Although this approach appears to work well 
qualitatively, the principle on which it is based is 
physically unsound. A particular example of this is the 
misinterpretation of the role of plastic deformation on 
crack instability [..5-7]. The analogy between plastic 
work and energy dissipated by other processes during 
crack growth is used in this paper to discuss some 
well-known toughening mechanisms. The difficulties 
encountered with interpretations of toughness based 
on energy absorbed or dissipated are emphasized and, 
wherever possible, the way towards a correct formula- 
tion and interpretation is pointed out. 
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2. The role of plastic deformat ion 
on crack instabil i ty 

The Griffith criterion for crack growth is a thermo- 
dynamic instability criterion which proposes that 
crack propagation takes place in a loaded body, which 
only deforms elastically, when the crack extension 
force, c~, reaches the critical value f#~ = 2% The func- 
tion f# can be obtained from elastic calculations of the 
change in the combined elastic energy of the body and 
the potential energy of the loading system caused by 
the extension of the crack alone. For an isotropic 
elastic body with a through-thickness crack of length 
c, and a remote tensile stress, c~, normal to the crack 
plane, the crack extension force can be written as 

= A~2C (1 )  

where A is a constant depending on the geometry of 
the body and the elastic constants of the material. The 
instability condition, with respect to crack extension, 
is thus given by 

AcrZc = 2~' (2) 

Orowan [8] and Irwin [9] independently suggested 
that the Griffith equation could be modified and ap- 
plied to materials exhibiting small-scale plastic yield- 
ing by adding a plastic work term, p, per unit area of 
crack surface to the surface energy, I. This term p is 
generally taken to be much greater than 7 and to have 
the same sign as % 

The Orowan and Irwin modification to the Griffith 
equation is often used in a generalized form in those 
cases where large plastic deformation and/or other 
energy-dissipating processes are associated with crack 
growth. The instability condition for crack propaga- 
tion is then written as 

Acy2c = ~ = R (3) 

where R is said to be a crack resistance term or a rate 
of energy dissipation, which has to be determined by 
experiment and which includes all the energy dissi- 
pated per unit increment of crack area [10-14]. 

While Equation 3 can be regarded as a generaliz- 
ation of Griffith's equation, it has also been inter- 
preted as an energy balance based on the principle of 
energy conservation [12, 13]. Both these formulations 
of the conditions for crack growth have been discussed 
elsewhere by the authors [7]. The conclusions, which 
are drawn from a rigorous analysis of the r61e of 
plastic deformation on crack instability I-6, 7], seem to 
conflict with the usual interpretation of p and R as 
crack-resistive terms. A simpler but equally sound 
physical argument will be given here to clarify this 
matter. 

Consider an elastic body of uniform thickness, t, 
with a through-thickness crack of length, c, which is 
loaded with a force P. The body plus the mechanical 
system applying the load P is considered to be, as 
implied in Griffith's original formulation, a thermo- 
dynamic system which can exchange energy with the 
environment as heat. The load elongation diagram for 
this loaded body is represented in Fig. 1. If the length 
of the crack increases by 8c whilst the region of the 
body where the force P acts remains fixed (the fixed- 
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grips condition) the load drops by 8Pc and the elastic 
energy (a Helmholtz free energy) of the body decreases 
by 8Ft. The total Helmholtz free energy of the body is 
increased at the same time by 27t8c dueto the forma- 
tion of extra crack surfaces. If, at the same time, plastic 
deformation takes place (near the crack, or elsewhere), 
the load drops by an extra amount 8Pp due to the 
conversion of elastic strain (or elongation) into perma- 
nent plastic strain (or elongation 8 0 . It is clear that 
the free-energy change of the system caused by the 
plastic deformation is a negative quantity since, like 
crack growth, it reduces the strain energy of the body, 
in this case by an amount 8Fp. This is the energy 
extracted from the body to produce the plastic defor- 
mation and is therefore the plastic work. From a for- 
mal point of view, and as far as computing energy 
changes is concerned, no distinction needs to be made 
between the plastic deformation which takes place at 
the crack tip and may be induced by the presence of 
the crack, and that which may occur elsewhere in the 
material. 

Of course the result would be the same if crack 
extension had taken place under fixed load rather than 
under fixed grips, and, in general, plastic deformation, 
like crack growth, will always reduce the combined 
elastic energy of the body plus the potential energy of 
the loading system, added with due attention to sign. 
Plastic work is not therefore energy which is stored in 
the sample, but is the free energy, ~Fp, extracted from 
the body and/or loading system to produce the plastic 
deformation. Most of this energy is dissipated as heat 
in the environment (if the environment acts as a con- 
stant-temperature sink), and only a small fraction, ~, is 
stored in the material as strain energy associated with 
dislocations and other defects produced by the plastic 
deformation. It is essential to note that for the formu- 
lation of a criterion of instability with respect to crack 
extension, as in Griffith's original theory, only the 
free-energy changes in the system as defined above 
need to be taken into account; the energy changes in 
the surrounding environment are not counted. There- 
fore the energy dissipated as heat in the environment 
(the largest part of the plastic work) represents a nega- 
tive energy change. The sum of all the free-energy 
changes associated with both crack growth and plastic 



deformation gives the total free-energy change, 6Fp, in 
the system as defined above, so that 

~Fr = 6F~ + ~)Fp -{- 2ty6c + o~Fp (4) 

and 

+ + 2y (5) 
where the sub-indices indicate changes at constant 
temperature, T, and length, 1. Here the terms 
(~Fc/~c)r,t and (6Fv/#c)r,z are both negative energy 
changes whilst the terms 2~, and ~(OFp/~c)r,l are posit- 
ive because they both increase the free energy of the 
body. The total free-energy change, gFr,  will in 
general be different from zero 'because Equation 4 is 
not a statement of energy conservation. It will only be 
zero if the system is in equilibrium (stable or unstable) 
with respect to crack extension. Of course if 6Fp = 0, 
the Griffith equation is obtained from Equation 5 by 
setting (~Fr/~c)r,t to zero, but if 6Fp is different from 
zero a plastic work term appears with a negative sign 
in Equation 5. The addition of a plastic work term to 
the surface energy, 2,/with a positive sign is therefore 
unjustified. Even in the most unthinkable case where 
:z = 1 (when all the work of plastic deformation is 
stored as elastic energy in the body) there is no posit- 
ive plastic work term to be added to the surface energy 
and the Griffith equation would be unmodified. The 
consequence is that if the plastic work term (l - ~z) 
(~Fp/6C)r,t which is a negative quantity, is included in 
Equation 5 to determine a crack instability condition, 
then plastic deformation, far from opposing crack 
growth would provide an increased crack driving 
force. This apparent paradox does not arise if the 
flee-energy changes resulting from plastic deformation 
are not included in Equation 5. A rigorous analysis of 
this problem shows [6] that in fact crack growth and 
plastic deformation are independent, though interac- 
ting, processes which do not compete for a limited 
supply of energy but draw energy independently from 
the same sources. The crack extension force, (r given 
by the left hand side of Equation 1, or its equivalent 
stress intensity factor, K, obtained from elastic calcu- 
lations, is derived from the rate of energy change 
(~Fc/Oc)r,~ produced by crack extension alone, al- 
though it may be affected by the presence of disloca- 
tions. 

The energy criterion used in LEFM is based on the 
critical value of ~, or K. Alternative, and different, 
definitions of toughness have also been proposed 
based on the total energy changes associated with 
both crack extension and plastic deformation (the 
terms (~Fc/~c)~,~ + (~Fp/~C)r,l in Equation 5) [-15, 16]. 
Although such definitions of fracture toughness have 
little physical justification [-6], they may still be ac- 
ceptable for practical purposes if experiment could 
prove that they are geometry- and load-independent 
material properties. 

It is concluded that the effects of plastic deforma- 
tion on crack propagation cannot be adequately ex- 

ptained by a generalization of the Griffith criterion 
which includes plastic work as a resistive term. 

A similar criticism can be raised against interpreta- 
tions of toughening mechanisms based on irreversible 
processes which occur during crack extension. The 
analogy between energy dissipated by plastic defor- 
mation and energy dissipated by other mechanisms or 
processes is clearly evident since both represent energy 
extracted from the system and dissipated into the 
surrounding environment. In the following sections 
a discussion of some well-known accepted toughening 
mechanisms is given. 

3. Toughening of a matrix by long fibres 
On the basis o f  exper imenta l  observat ions,  the fai lure 
of a fibre-reinforced material and the contribution of 
the fibres to the toughness of the material is usually 
modelled by the following series of events considered 
with reference to Fig. 2 which represents part of 
a fibre-reinforced sample of length l loaded in the 
fixed-grips condition by a force P at its ends in a direc- 
tion parallel to the fibres [17-22]. It is supposed that 
a crack grows in the matrix between the fibres, its 
surface area increasing by ~am. This will cause the load 
to drop by ~P,, and some elastic strain energy, 6Fro, 
will be released from the sample as the stress generally 
relaxes. At the same time, however, the load in the 
unbroken fibres crossing the crack increases. If the 
fibres are rigidly bonded to the matrix and no sliding 
between fibres and matrix is allowed, the relaxation of 
the crack surfaces will be small with a correspondingly 
small change, 6Fm, in free energy and a very small 
driving force for the crack to open. If the fibres have 
a high Young's modulus and they are not allowed to 
slide, both matrix and fibres will break together, as in 
a homogeneous body. The only increase in toughness 
which the fibres can provide in this case must come 
from the toughness of the fibres themselves. This "no- 
sliding condition" will not be examined further be- 
cause it is a particular case of the more important 
situation where some de-bonding and sliding of the 
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fibres is allowed over a length 8y. This length is deter- 
mined by the distance over which the shear stress 
along the fibre-matrix interface exceeds a certain slid- 
ing friction stress, tz, which is assumed to be non-zero. 
If the crack opens in this manner in the fixed-grips 
condition then the force, P, on the sample will drop 
further and the elastic energy (a Helmholtz free 
energy) will be decreased by an amount 8F:. When the 
elastically stretched fibres eventually break, creating 
a fibre fracture surface of area 8az, extra elastic energy 
8Fd is released not only from the broken fibres as is 
often assumed but also from the whole sample. After 
failure of a fibre there may be some length 8x of 
broken fibre which slides out of the surrounding 
matrix (see Fig. 2), and this produces further relaxa- 
tion of the stress and further decrease of the elastic 
strain energy by 8Fp. 

The total decrease (or negative change) in the elastic 
strain energy of the sample is 8F" + 8F: + 8Fd 
+ 8Fp and this provides the driving force for the 

sequence of cracking and sliding events. On the other 
hand the free energy of the sample will have increased 
due to the formation of the matrix crack free surfaces, 
28a,,, the fibre crack free surfaces, 2Say, and the de- 
bonded fibre-matrix interface, Say". This free energy 
increase is given by 

27,,8a" + 27sSas + (Ts + 7" - 27s,,)Sas" 

where 7s and 7,, are the surface energies of fibre and 
matrix respectively, 7s" is the surface energy of the 
fibre-matrix interface and 8as" is the area of the 
debonded interface. 

The total free energy change, 8Fr of the composite 
sample is therefore given by 

8FT = 8Fm + 8F s + 8Fe + 8Fp + 2T"Sam 

+ 27ySay + (7y + 7" - 27:")8az" (6) 

Again it is noted that the sum of all the free-energy 
changes is not in general equal to zero. It is zero only if 
a condition of instability with respect to crack exten- 
sion exists for this system. In Equation 6 only the 
surface energy terms are positive because they contrib- 
ute to the increase in the energy of the sample due to 
the formation of extra free surfaces. The other terms 
are all negative because they represent decreases in the 
strain energy of the sample. 

In all the conventional models of fibre toughening 
based on energy considerations great emphasis and 
importance is placed on the work done against fric- 
tional forces during sliding or fibre pull-out. This 
work is calculated as a separate quantity and is then 
included in the evaluation of the energy changes with 
a positive sign [17-22]. It must be clear from our 
formulation and discussion that the work of fibre 
sliding and fibre pull-out are the quantities 8F: and 
8Fp which are both negative, as was the work of plastic 
deformation in the case where plastic deformation 
accompanies crack growth. 

The fact that fibre sliding or pull-out is not friction- 
less and that some, or all, of the work of friction is 
dissipated as heat to the environment is irrelevant and 
of no consequence as far as the formulation of the 
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instability criterion is concerned. Only the difference 
between the final and initial energies of the system 
needs to be considered; the energy gained by the 
surrounding environment does not enter the equation. 

Because our formulation is at variance with the 
accepted energy-balance models it is perhaps worth- 
while to repeat the argument for the case where the 
crack extension takes place under constant force. 

When the crack grows in the matrix by 8am and 
there is no sliding of the fibres, the sample length 
increases by a small amount 81,, and if the fibre slides 
over a distance 87 there is a further increase 81 z in the 
length of the sample. The elastic strain energy of the 
sample (a Helmholtz free energy) increases by 
8F: + 8F" and the work done by the constant force, P, 
is P(~l: + 8l"). 

When the fibres break and pull out of the matrix, 
there is a subsequent increase in sample length, 8ld and 
81p, due to fibre rupture and pull-out, respectively. The 
constant force does work equal to P(Sld + ~lp) and the 
increase in strain energy of the sample is 8Fd + 8Fp. It 
is to be noted that if the deformation of the matrix and 
fibres is linear elastic then the increase in strain energy 
is equal in magnitude to half the work done by the 
external load, irrespective of how the stresses are 
redistributed between matrix and fibres. Existing 
calculations of the energy changes based on a local 
redistribution of stress, yield results which do not 
satisfy this condition and cannot therefore be correct 
[17, 21, 22]. 

The total change in the combined strain energy of 
the sample and potential energy of the loading system 
(the Gibbs free energy) is therefore 

5 ~  = ( ~ F "  + ~ F f )  - P(~t" + ~If) 

+ (SFd + 8Fp) - P(81d + 81p) + 27=8a,. 

+ 27sSa: + (Ts + 7" - 27s")Sa:" 

= -SF, .  - 8F s - 8Fd -- 8Fp + 278a" 

+ 27s Say + (7s + 7,. -- 27s")gay" (7) 

and this is the same as Equation 6 because the terms 
8F,,, 8F s and 8Fp are now positive quantities which 
appear with a negative sign. As before in Equation 6, 
the work of fibre sliding and fibre pull-out is included 
in these terms. This work is not energy absorbed by, or 
stored in, the sample and it is th,erefore incorrect to 
include any of these work terms with a positive sign in 
the total energy changes to make them appear as an 
increased surface energy or as crack-resistive terms. 

Some existing models of fibre toughening in which 
the energy dissipated acts to increase the crack resist- 
ance, the effective surface energy, or the work of frac- 
ture, are based on the notion that energy dissipated is 
unavailable to crack growth [19, 20]. This is evidently 
inspired by an energy conservation criterion which is 
always satisfied whatever the crack length, irrespective 
of whether the crack grows or not, and therefore it 
cannot provide a criterion for crack extension on its 
own [7]. 

The instability condition with respect to crack 
extension is obtained by setting (OFr/t?a,,)r,~ 
= (~Gr/~a")r,p = 0 and it can be seen that the 



inclusion of the work terms in the energy changes used 
to fo, mulate a matrix crack instability criterion would 
produce an increased crack driving force rather than 
an increase in crack resistance. This paradox is similar 
to that encountered in Section 2 when discussing the 
effect of plastic deformation on crack growth and it 
highlights the fundamental difficulty in defining a cri- 
terion based on a global energy balance for crack 
instability in a composite material. This is because 
crack growth in these complex materials takes place 
by a series of sequential events such as matrix crack- 
ing, debonding and fibre rupture. It should be pos- 
sible, in principle, to define in this case a crack exten- 
sion force for each one of these events separately but it 
is doubtful whether a meaningful definition of a global 
crack extension force, encompassing all the events 
together, is possible. A more complete discussion of 
this point in connection with the analogous case of 
plastic deformation is given elsewhere [6]. 

Further confusion is created by the use of the word 
toughness as the "total fracture energy" obtained from 
the area under the force elongation curve up to com- 
plete failure divided by the apparent area of the frac- 
ture surface. This "total fracture energy" is a definition 
of toughness entirely different from that based on the 
critical value of the crack extension force or critical 
value of K. It is not even equaI to the rate of energy 
dissipation of Equation 3. The indiscriminate use of, 
and conversion between, these different kinds of 
toughness is often made in the literature and this is 
totally unjustifiable [19, 23]. 

4. Phase- transformat ion  toughen ing  
This refers to the increase in toughness observed to 
occur in some steels and in some ceramic materials 
containing ZrO2 particles when a stress-induced 
phase transformation in a particulate second phase 
occurs in the stress field of the growing crack. Some 
early explanations of this toughening effect were based 
on the fallacious argument that "the phase trans- 
formation in front of a growing crack is equivalent to 
a non-elastic deformation, and as such, is capable of 
absorbing energy that would otherwise be available 
for crack extension" [24], or that "the extra toughness 
available can be estimated from the release of strain 
energy needed to compensate for the changes in free 
energy of the transformed particles" [253. For a phase 
transformation to occur at all in a loaded sample, the 
free energy of the whole system must remain un- 
changed (if the system is in equilibrium) or decrease. 
From this simple consideration it should be clear that 
the phase transformation does not "absorb" energy in 
the sense that it does not increase the free energy of the 
system, but decreases it as does plastic deformation. 

The free-energy changes associated with a phase 
transformation which takes place in a sample loaded 
at constant force can be obtained in different ways, but 
basically the following need to be considered. There is 
a change in the bulk free energy of the transforming 
particles, ~F0, which is the difference in their 
Helmholtz free energies in the transformed and un- 
transformed states when the particles are stress-free. 

This is a negative quantity which provides the driving 
force for the transformation. If the transformation 
results in volume and/or shape changes, there are 
further changes 8Fp and 8Fro due to the change in 
strain energy of the transformed particles and to their 
misfit strain energy in the matrix, respectively. Both 
these changes are positive and oppose the transforma- 
tion. The work, 8 W, done by the external load during 
the transformation can be positive or negative de- 
pending on whether this opposes or assists the trans- 
formation. In the cases of interest in transformation 
toughening, where the phase change of the particles 
takes place near a crack, an extra free energy term, 
8Fi, arises due to the interaction between the stress 
field of the crack and the misfit fields of the particles. 
Since the transformation is induced by the presence of 
the crack it is to be understood that this term is 
intrinsically negative, as it must increase the driving 
force for the transformation. Particles in regions 
where the contribution to the magnitude of 8Fi is 
greatest will be those more readily transformable. 

The total Gibbs free-energy change due to the trans- 
formation of particles near to a crack is therefore 

8 G  t = 8Fo + 8Fp + 8Fro + 8Fi - 8Wt (8) 

Further changes due to differences in particle/matrix 
interfacial energies before and after transformation 
and due to changes in the modulus of the transformed 
particles could be added to this sum but will be ne- 
glected here because they do not affect the argument. 
It is far more important to note that for the trans- 
formation to be possible at all 8Gt must be a large 
negative quantity since in practice martensitic trans- 
formations require large driving forces. 

Consider now the Gibbs free energy change, gGc, 
due to the extension of the crack. The crack surface 
area increases by ~a, the strain energy increases by 
8Fc, the load does extra work 6 Wc equal to twice 8Fc 
and 

8Gc = 8 F r  8We + 278a = -6F~ + 276a (9) 

where 7 is the surface energy. 
There are additional free energy changes occurring 

as the crack extends which have not yet been con- 
sidered. As the crack grows some particles which may 
have transformed in regions ahead of the crack or at 
the crack tip will be transferred to the flanks of the 
crack, and the contributions of these particles to both 
8F,, and 8F~ will change. The strain energy in the 
particle misfit field, (the particle's contribution to 
8F,,), will decrease because of the proximity of the 
traction-free crack surfaces, while the contribution to 
the interaction energy term, 8F~, increases (from 
a negative value) as the stresses of the crack field are 
reduced to near zero behind the crack tip. It is here 
assumed that no reverse transformation takes place in 
the crack flanks; if this did happen the Gibbs free 
energy would be reduced even further. 

It is difficult to predict how large these changes in 
8Fr and 8F,, will be, but they are of opposite sign and 
the net result cannot yield a positive 8G, overall. The 
sum of all the Gibbs free energy changes which take 
place when the crack extends and some particles 
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transform simultaneously gives the total Gibbs free- 
energy change, 

8G = - S F c  + 8Gt + 278a (10) 

In some models of transformation toughening the 
terms in Equation 8 are carefully and adequately con- 
sidered [25], but there has been a failure to realize that 
8G, is a negative quantity, otherwise no phase trans- 
formation would be possible [24-26]. It is therefore 
incorrect to include this term or some of the negative 
terms in Equation 8 with a positive sign in the sum of 
the free-energy changes in Equation 10 to make them 
appear as an increased effective surface energy or as 
a crack-resistive term and thus explain the increase in 
fracture toughness [24-26]. Again, if the free-energy 
changes associated with the phase transformation are 
included, with their correct sign, in the computation of 
the free-energy change used to obtain a global insta- 
bility criterion from the condition (OG/3a)r,p = 0, they 
will provide an increased crack driving force. 

As in the case of plastic deformation, the energy 
changes associated with the phase transformation 
should not be included in the evaluation of the crack 
extension force. 

It seems to be generally accepted that particles 
transforming ahead of the crack tip make a negligible 
contribution to toughening and that the largest con- 
tribution arises from the "residual energy density 
stored in the wake of the crack" [27-29]. While it is 
true that the energy of interaction, 8F~, between the 
crack stress field and the stress field of the particles 
increases when these translate behind the crack, this is 
only part of the total free-energy change when trans- 
formation plus crack growth occurs. It would there- 
fore be incorrect to take this positive contribution to 
the energy changes as the term responsible for the 
increase in toughness in the context of an overall 
energy-balance criterion. Furthermore, it is errone- 
ously argued that the energy density stored in the 
transformation zone originates in the hysteretic beha- 
viour of the region of material containing the trans- 
forming particles as it undergoes a loading-unloading 
cycle [28, 29]. Similar erroneous conclusions are 
drawn for other toughening mechanisms based on 
energy "deposited" at the crack flanks [30-33]. This 
has probably originated from a wrong interpretation 
of the J integral and its application. (For a more 
complete discussion of this question see [34].) 

5. Discussion 
In a discussion of existing interpretations of toughen- 
ing it is important to clarify that different definitions 
of fracture toughness have been used, often indiscrimi- 
nately, in the literature. One is based on a thermo- 
dynamic criterion for crack instability as in Griffith's 
original work, in which fracture toughness is the value 
of the critical parameter, ~ ,  or K~, which is obtained 
experimentally using elastic calculations of the energy 
changes associated with crack extension alone. We 
have argued here and elsewhere [6, 7] that this critical 
value is not the rate of energy dissipation by irrevers- 
ible processes taking place during crack growth. 
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The rate of change, with respect to crack area, of the 
total energy dissipated by all the processes which take 
place at the same time as the crack grows, is a different 
definition of toughness which is not based on a frac- 
ture instability criterion. It would therefore be difficult 
to use it to make predictions of the behaviour of 
a material as if it were a characteristic material prop- 
erty. However, fracture toughness or fracture resist- 
ance thus defined does certainly scale up with the rate 
of energy dissipation and it constitutes the basis for 
some erroneous interpretations of crack resistance 
curves [11]. 

Since it is obvious that both plastic deformation 
and other processes which dissipate energy contribute 
to an increase in the resistance to crack propagation it 
must be the r61e of fracture mechanics to explain this 
experimental fact in a consistent and physically ac- 
ceptable manner compatible with the laws of thermo- 
dynamics. 

Plastic deformation and other energy-dissipating 
processes surely affect the propagation of cracks in 
many different and complex ways, and one of the 
important effects must be the relaxation, or reduction 
of stress, which they produce at the tip of the crack. 
This effect which has been referred to as the "shield- 
ing" of the crack from a remote stress has been recog- 
nized and considered by many research workers in 
terms of the reduction of the stress intensity factor 
K [35, 36]. Shielding, or stress reduction at the crack 
tip, is an unavoidable consequence of any mechanism 
such as plastic deformation which dissipates energy. 
This stress reduction lowers the local value of both the 
crack extension force (#, and the stress intensity factor, 
K, so that the critical condition for crack instability is 
more difficult to achieve. 

The effects of shielding are more intuitively obvious 
when expressed in terms of the stress intensity factor, 
but it is important to realize that explanations based 
on the local value of the crack extension force are 
entirely equivalent [6]. 

In transformation-toughened materials the gradient 
of the interaction energy between the stress field of the 
transforming particles and the stress field of the crack 
produces interaction forces which have a net shielding 
effect. Some calculations of this effect purport to show 
that phase changes which produce only a volume 
change in regions directly ahead of the crack do not 
cause any shielding [27], provided that the crack tip 
remains outside this region, but a large shielding con- 
tribution appears as soon as the crack attempts to 
penetrate the transformation zone. Since the trans- 
formed zone must always be at the crack tip and 
translates along with it, there will always be a shield- 
ing effect. Further shielding may arise as a result of the 
large shear components of the martensitic phase 
change in ZrOz particles, although the effect of this 
may be reduced by twinning. 

In some materials, mainly ceramics, a zone of 
micro-cracks is often formed at the tip of the main 
crack. This is attributed to the presence of residual 
stresses and their interaction with the field of the main 
crack [29], or, in transformation-toughened ceramics, 
to the strains produced by the tetragonal-to- 



monoclinic transformation of ZrO2 particles [37]. The 
formation and presence of this micro-cracked zone is 
likely to have an influence on the toughness of the 
material, but it is by no means obvious whether this 
should result in an increase or a decrease in fracture 
toughness. The formation of the micro-cracks and 
their interaction with the main crack is a complex 
process involving several steps. The nucleation and 
growth of the micro-cracks themselves must satisfy an 
energy criterion, but when the micro-cracks are 
formed they will both shield each other and shield 
the main crack which could then propagate by the 
rupture of ligaments between micro-cracks. This is 
a case analogous to that discussed in connection with 
fibre toughening in Section 4 and it should therefore 
be possible, in principle, to define the crack extension 
forces for each individual event involved in the propa- 
gation of fracture. It is however far less clear whether it 
is possible to define a global crack extension force 
based on an overall instability criterion for the growth 
of the main crack, assuming that it is possible to 
identify one as such. 

In fibre-reinforced materials where the fibres remain 
unbroken as a crack grows around them in the matrix, 
the extra load taken by the fibres both at the crack tip 
and behind the crack front, helps to reduce the stress 
at the tip of the crack and the magnitude of 
the crack extension force. In these materials the effects 
of shielding must be important, and can be modelled 
by a distribution of point forces, or even a continuous 
distribution of force, on the crack surface acting in 
such a direction as  to tend to close the crack. The 
magnitude of these forces depends on the elastic strain 
of the segments of unbroken fibres and this in turn 
depends on whether the fibres are rigidly bonded to 
the matrix, or whether sliding between the matrix and 
the fibre is allowed. Those fibres which cannot de- 
bond nor slide, will carry a higher stress, and will be 
those more likely to break so that fibres that can slide 
and remain unbroken will produce the most effective 
shielding. A sound model of fibre toughening based On 
this concept of crack bridging has been developed in 
considerable detail [22, 38-40], and is a good example 
of how all the features of fibre toughening can be 
accommodated into models which do not involve 
erroneous arguments based on the work of fibre pull- 
out, or work of friction, and energy dissipation. 

Some explanations of the R-curve behaviour of 
alumina [44] have been based also on the misunder- 
standing and misuse of the fracture energy concepts 
discussed in this paper. The increase in toughness and 
the development of R-curve behaviour which arise 
from the bridging of the crack faces in coarse grained 
alumina have been attributed [41] to the energy 
dissipated by the frictional processes involved in the 
bending, rotation and sliding of the bridging ligaments 
as the crack opens. It has been explained here that the 
energy dissipated (per se) does not contribute to an 
increase in fracture toughness, and to equate the 
increase in toughness to the area of the load-deflection 
hysteresis loop generated by the frictional processes is 
clearly wrong. The effect of crack bridging on the 
toughness of coarse grained ceramics can be properly 

explained, like fibre toughening, in terms of the crack 
tip shielding produced by closure forces on the crack 
faces [42, 43]. 

The toughening of polymeric matrices by rubber 
particles [44] can be discussed in the same way as fibre 
toughening. Apart from any stress relaxation due to 
plastic yield of the matrix at the crack tip, further 
stress relaxations result from the deformation of the 
softer, or lower modulus, rubber particles and from 
the bridging and stretching of those particles that, as 
in fibre-reinforced materials, are left behind the crack 
front and restrict the crack opening. All these shield- 
ing effects would produce a reduction in the crack 
extension force of the matrix crack which would result 
in an apparent increase in toughness. It is not sugges- 
ted here that shielding alone can provide a complete 
explanation of toughening; this is perhaps a matter for 
further investigation. It is clear, however, that descrip- 
tions based on energy dissipation are fallacious and 
they cannot provide a valid explanation for the in- 
crease in toughness. On the other hand, shielding can 
explain most of the features of toughened materials, 
the increases in toughness arising from a reduction in 
the local value of the crack extension force and not 
from an increase in energy dissipated. 
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